
SANDIA REPORT
REFERENCE COPY

C.2
SAND90–0589 l UC–41O
Unlimited Release
Printed July 1990

A Development Plan for a Massively
Parallel Version of the Hydrocode CTH

A. C. Robinson, E. Fang, D. Holdridge, J. M. McGlaun

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789

SF2900Q(8-81)

Issued by Sandia NTational Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technicai Information
PO BOX 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AO1

SAND90-0589
Unlimited Release

Printed July 1990

Distribution
Category UC-41O

A Development Plan
Parallel Version of the

for a Massively
Hydrocode CTH

A. C. Robinson, E. Fang, D. Holdridge and J. M. McGlaun
Sandia National Laboratories

Albuquerque, New Mexico 87185

Abstract

Massively parallel computers and computer networks are beginning to appear as an integral part of
the scientific computing workplace. This report documents the goals and the corresponding de-
velopment plan of the massively parallel project of Departments 1530 and 1420. The main goal of
the project is to provide a clear understanding of the issues and difficulties involved in bringing the
current production hydrocode CTH to the state of being portable to a number of currently available
parallel computing architectures. In the process of this research, various working versions of the
code will be produced.

1.0 Introduction

The transient dynamic continuum mechanics code, CTH, a “hydrocode”, is used to ana-
lyze a wide variety of problems in shock wave physics. It is a very general purpose code .
which allows the use of many materials and complex configurations and is, in general, ex-
pensive to run. Budget and time pressures require that hydrocode computations be com-
pleted faster and more cheaply than in the past. At the same time, demands for capability
to examine problems currently out of reach are ever present. Parallel processing architec-
tures of various types give the promise of providing much more computing power at re-
duced cost.

A number of different parallel processing architectures are available. The classical shared
memory supercomputers, such as the CRAY machines, have a small number of very fast
CPU’s (4-8) with vector pipe hardware which allows for very fast processing of arithmetic
operations on arrays. The CPU’s can either operate independently on separate jobs or
work concurrently on the same job using multitasking algorithms which usually take the
form of spreading work across outer DO loops. When a CPU is done with one loop, it re-
turns to select the next loop which has yet to be processed. The CTH hydrocode currently
runs either in single CPU or multitasking mode on a CRAY XMP 4/16 with extensive use
of the Solid State Disk (S SD) for 3D calculations.

The MIMD (Multiple Instruction Multiple Data) machine such as the hypercube architec-
tures offered by the NCUBE Corporation consists of many (up to tens of thousands) of
medium speed CPU’S. Each node runs asynchronously but work can be correlated by ex-
plicit message passing. Each node has its own local memory with enough memory for
both the code and distributed data. Strictly speaking, the CRAY shared memory multi-
tasking architecture falls under the general heading of a MIMD machine. However, for
the purposes of this plan, MIMD refers to a distributed memory MIMD architecture.

The SIMD (Single Instruction Multiple Data) computer such as the Connection Machine
offered by Thinking Machines Corporation takes the approach of defining vector or matrix
data elements which are spread out among thousands of local memory computational ele-
ments or nodes which are arranged in a hypercube architecture. One to several data ele-
ments of each vector or matrix are stored on a node. A host computer executes “vector”
instructions which are broadcast and executed in parallel on large data sets.

In addition to the massively parallel machines mentioned above, one has the additional op-
tion of computing on networks. For example, a small SUN LAN may include 8 different
workstations each of which represent significant computational capability. Together they
represent a very powerful compute engine and one would wish to utilize this capability. A
number of software and hardware products are under development with the goal of turning
LANs into powerful disrnbuted memory MIMD computing environments. One example
is LINDA, developed at Yale University.

Each of the above computing concepts is favored by their respective proponents based on
arguments of cost, raw speed and usability. The best architecture is certainly not an abso-
lute measured in terms of raw speed but depends on the needs and sophistication of the

2

user, the size and extent of natural parallelism of his problem and, most importantly, the
user’s budget in time, frustration and money. The user’s budget is a primary concern and
is addressed mainly in terms of the quality of software and attendant customer support. A
truly viable “production” machine provides an environment with costs which are low
enough and/or the benefits high enough to be worth the effort to a sufficient number of us-
ers to support the system.

This report describes a set of goals and an evolutionary development method which is in-
tended to port the code CTH to the various architectures mentioned above and to provide
feedback on the structural changes which will be required in the code to provide portabili-
ty across the various compute machines. This is especially important as massively parallel
computing architectures are evolving rapidly. No standard hardware designs or standard
software interfaces have emerged. Some degree of portability is essential to preserving
the value of the parallelization project. We allow that one possible conclusion of the re-
search may be that the goal of portability or near-portability across the broadest class of
architectures is not feasible or desirable. The intent of code portability is to conserve in-
vestment in the code itself while at the same time providing added-value by permitting the
code to be run economically and reasonably efficiently on each of the above compute en-
gine prototypes. It is recognized that major database and coding changes maybe neces-
sary to achieve a near portability goal. Load balancing difficulties for the CTH code are
expected to be severe at first. However, load balancing strategies will be implemented in
an incremental way as the scope and type of problems are identified and as familiarity
with the new computing paradigms increases.

2.0 Parallel CTH Phased Development Plan

It is proposed that the development of the massively parallel version of CTH follow an in-
cremental or evolutionary development program. The developing code will be termed
PCTH for Parallel CTH. The evolutionary development is intended to minimize program-
ming clutter while leaving open the essential code structure issues. The current SUN ver-
sion of CTH will be modified to remove physics options which have little intrinsic bearing
on the database, coding and load balancing issues which are the essence of the research
and development this project is expected to address. A progressive set of codes will be
implemented. The evolutionary development process with its corresponding acronyms is
shown in Figure 1.

Figure 1. Evolutionary PCTH development sequence.

vcm

MIMD ,... SIMD LAN ,... CRAY

I I I I
2D1F 2D1F 2D1F 2D1F

I 1 I [

2D2F ,... 2D2F 2D2F 2D2F

1 I I 1

2DnF ,... 2DnF 2DnF ,... 2DnF

I I I I

3D1F ,... 3D1F 3D1F ,... 3D1F

I I 1 I

3D2F ,... 3D2F ..., 3D2F ,... 3D2F
I I I I

3DnF ,.. 3DnF 3DnF ,... 3DnF

The code development for the two major parallel architectures under consideration,
MIMD and SIMD, will proceed somewhat concurrently in order to make comparisons on
an equal basis as the complexity of the coding and algorithms increases. Every attempt
will be made to keep the coding style and database structures the same. A particular code
version and type will be denoted by {name}. (machine}. {phase}. {version). The {name]
entry is PCTH. The entry {machine} is one of MIMD, SIMD, LAN or CRAY. The entry

4

(phase] is one of 2D1F, 2D2F, 2DnF, 3D1F, 3D2F or 3DnF where 2D stands for a two di-
mensional code and 3D stands for a three-dimensional code. IF denotes a single fluid
code, 2F denotes a two fluid version of the code and nF denotes a multiple fluid version of
the code. The entry, {version }, is a whole number which may be followed by a descriptive
comment. The zero value refers to the first rewrite of the standard production code which
runs correctly on the target architecture (either a simulator or a real machine) at the speci-
fied phase. Higher version numbers will be assigned to subsequent major upgrades to the
code at a given phase.

A number of options currently available in the production version of CTH will not be
available in the initial evolving versions of PCTH. These options will be removed initially
because they would provide only additional programming difficulties and no new concep-
tual architectural and algorithmic barriers. A few of the options which will not be present
in the initial version of PCTH are: 1) deviatonc stresses (only compressible fluids will be
considered), 2) high explosives, 3) user defined energy sources and 4) tracer particles.

This development plan explicitly allows for skipping or terminating the development of
various code configurations if it becomes clear that a continued detailed investigation is
unnecessary or unwise. At first glance the development sequence described may appear to
represent a totally unreasonable amount of work. Fortunately, the MIMD message passing
computing paradigm maps in a straightforward way to the LAN architecture so that in this
case we have only to obtain or develop message passing software equivalent to the mes-
sage passing libraries found on integrated distributed memory MIMD machines. The rea-
son the LAN architecture is not included under the general MIMD heading is that the
communication time issues and solutions may of necessity be different than those for a
MIMD machine with very rapid communications. One could also utilize the CRAY in a
MIMD message passing mode since multiple CPU’s could be employed for different node
processes. However, it is possible that the MIMD paradigm would be more effectively
utilized for purposes of reducing memory charges via extensive use of the SSD. The ma-
jor development effort for this project will revolve around the MIMD and SIMDarchitec-
tures.

5

3.0 The MIMD Architecture

Our prototype MIMD architecture is the hypercube. The hypercube is an inductively de-
fined architecture which has P = 2d node processors and provides user access through an

additional host or front end machine. The set of node computers is called an order d hy-
percube. The configuration is illustrated in Figure 2. The hypercube has the property of
requiring that at most d communication paths be traversed in order to send a message tlom
one node to any other node.

Figure 2. ~pical hypercube configuration.

4 4-

0110

0010

The host machine can operate as an I/O server for the hypercube and can be any standard
serial computer. It provides terminal access, user disk space, and utility software to access
the hypercube. Each node has a limited local operating system which is capable of load-
ing and running executable passed from the host and of passing messages (data) between
itself and the host and/or any of the other nodes. Each node operates asynchronously but
can be synchronized by explicit message passing techniques such as blocked reads. The
nodes may have high speed graphics output as well as local direct disk storage.

Physical domains represented by a Cartesian grid can be mapped to a hypercube in a
straightforward way using binary reflected Gray code. This mapping results in physical
neighbors becoming “next door’’ computer neighbors and is given in Figure 3. In two di-
mensions physical neighbors are at most two processors away in computer space. Similar-

6

Figure 3. One, two and three dimensional Gray codes

I 00101111110
I

1000 1001 1o11 1010

1100 1101 1111 1110

0100 0101 0111 0110

0000 Ooo1 0011 0010

01000 01001 01011 01010

01100 01101 01111 01110
In

00000 00001
11OOO 11001 11011 11010

— 11100 11101 11111 11110

10100 10101 10111 10110

1000O 10001 10011 10010

ly physical neighbors in three dimensions are at most three processors away. This
standard Gray code decomposition is clearly applicable to CTH which has a rectangular
parallelipiped mesh scheme.

This decomposition also has application in the case of the SIMD machine. However, in
the MIMD case each processor refers to a block of data and in the SIMD case we think of
each processor as containing only one computational cell.

3.1 PCTH.MIMD.{phase}.O Conversion

The code PCTH.MIMD. {phase }.0 is a straightforward port of Cl!Tl to the hypercube ar-

chitecture using a Gray code mapping (described in the previous section) to split up the

data and the work. This approach by itself will not necessarily suffice for obtaining good
load balancing, but represents away of rapidly obtaining useful information and compari-
sons between different architectures and of providing a basis upon which to implement
various load balancing strategies. The changes that will be required to create the version O
codes are described below. The version O dataflow diagram is shown in Figure 4. The
symbol DB stands for “database.” The figure also shows how boundary quantities are
shared between the nodes. The boundary-passing libraries will be built to be as general as
possible so as to be reusable for future development. For example, variable numbers of
boundary cells may be required to accommodate advanced numerical schemes, such as the
essentially non-oscillatory (ENO) fluxing methods. Paired reads and writes of boundary
information to neighboring nodes may be accomplished, for example, using a red/black or

7

checkerboard scheme to avoid communication bottlenecks and to ensure rapid and robust
communications. The code will be structured so as to allow variations in the type (e.g.
strips versus blocks) of subgrid decomposition selected.

Figure 4. Version Osample dataflow diagram and boundary overlap for 4 nodes.

?)
User I ut

CTHGEN

t‘w

II
u

t \ NODEO1
/B PCTH_NODE

~1
DB3 ‘

/-‘x

“B

B
DBO ; DBl

......................

DB2 ; DB3

3.2 Code Changes to Create PCTH.MIMD.{phase}.O

The next several pages give a general outline of the current CTH top level executive rou-
tine and the replacements or substitutions (x=>y means module x is replaced by module or
action y) which will be necessary in order to create PCTH.MIMD. The notation (=>x)
signifies that a totally new module named x must be built.

CTH =>PCTH

cth=>pcth

fndid = tell db manager this is cth
cedrv = perform calculation

CEDRV - TOP EXECUTIVE ROUTINE

Cedrv then calls several routines. Most of them are small routines. The routine that per-
forms most of the work is celop=xeloph.

cedrv

cemuli = start multitasking library
syctty = open terminal i/o files
sysecd = zero timers
cever = read all package versions
fndinr = first pass through user input
logmes = messages to log file
sydate = get date
sytime = get time
syjobn = get job name
logmes = messages to log file
cever = write all package versions
dbmzer = zero storage flags
dcofbk = multitasking memory manager
dbaget = multitasking memory manager
dbmmxk = set maximum number of in-core planes
SCCIV= set number of extra variables per cell
uinz = read user input that require no database in core
dbgdbs = read initial short database
uins = read user input that require small database
fatret = check for bad input
dbgdbl = read rest of database
dbmclp = clear any planes left in core
cepbd = initialize data
scdrv = define scratch storage requirements
uinf = read user input that requires entire database
fatret = check for bad input
logmes = messages to log file

(celop = main program loop)=> (celoph = host driver)
dcptal = write all planes to ssd
dbpdb = write restart file
setprio= create dropfile on ctss system
dbmclp = clear planes out of memory
logmes = messages to log file
syftim = write timing information to log file
sdclos = close and destroy ssd file
massit = copy files to archival storage
logmqe = copy executive log file to output file
fishit = make microfiche if requested

CELOP=> CELOPH

Celoph is the executive routine that sets up the hypercube, subdivides the database and
collects information as it comes back from the nodes. For some architectures celoph does
nothing more than call CELOPN. A possible pseudo-code version of celoph is given be-
low.

celoph
if (first cycle of problem) then

cezero = perform cycle zero tasks
dtcalc = calculate initial timestep

endif

=>ceinit = attach and load hypercube
=xesrom= broadcast common databases to nodes.
=Xesplt = split up physical database and send to nodes one at a time.
=>cepoll = read messages and act on them from the host while not done

read error messages
read and tally all_done messages
read and process efficiency and timing information
read database from nodes and write to permanent storage
if(something_is_very_wrong) do error processing
if(all_done && no_more_messages) exit

end cepoll
=xeclos=detach hypercube

end celoph

10

CELOP => CELOPN

Celopn is the executive subroutine that calls all the major packages. It is the only routine
called by the main node program NCTH. There is one loop through the major packages.
The loop continues until the routine ce2stp passes back a nonzero flag. The nonzero flag
indicates the calculation should stop. The pseudo-code version of celopn is given below.

cemul = initialize multitasking=>node initialization and database read
begin cemul
=>cerrom=read and broadcast common blocks
=>nodmem=allocate memory and setup pointers
=xerecv=get database for this node
=>neighb=compute neighbor addresses
=>bdinit=fix up some arrays for use by boundary cells
end cemul

edstar = generate initial edit= >delete
start of main loop

ceint = check for user interrupts
ce2stp = check for end of calculation
if (end of calculation) then

edende = generate final edit=>cesend=send restart
cemule = shutdown multitasking=>’’node done” message to host
return calling routine=>return to ncth and stop

endif
eddrv = generate edit if desired=>send restait to host if desired
=xebdup=update boundary cells
celag = Lagrangian step
erdrv = Eulerian remap step
radman = Radiation step=>delete
vddrv = rigid body velocities=xlelete
edln = one line edit per cycle=tielete
dtcalc = new timestep, minimize timestep over all nodes
sysecd = get total cpu time=>get, compute and send to host timing info

end of main loop

3.3 PCTH.MIMD.{phase} .{version}

Version numbers greater than zero for each phase represent additional milestones in terms
of increasing the options, robustness and capabilities of the version Oproduct. For exam-
ple, the first version OMIMD code will simulate, only problems which are fully periodic in
both the x and y directions. The periodic case is the natural boundary condition for a
Gray code domain decomposition. Subsequent versions of the code will examine issues
of communications and boundary update schemes. The physics routines will be modified
to take the non-periodic boundary condition options out of the field solver routines and
into boundary update routines. The first versions of the code for some phases are not ex-
pected to result in extremely good efficiencies. A block-structured grid approach may per-
mit effective static and dynamic load balancing algorithms to be developed. Another

11

load-balancing strategy which might be implemented for some problems and code phases
is a scattered decomposition on the equation-of-state iterations or mixed cell computa-
tions. One such algorithm in this regard has already been given in terms of a task list scat-
ter[6]. New CTH physics algorithms as well as specific dynamic load balancing
algorithms will be considered.

Currently, there are no known hydrocode performance ratings on hypercubes. Initial effi-
ciency ratings will vary wildly depending on the problem being solved and the number of
nodes in use. For example, the code PCTH.MIMD.2D lF.O may run fairly efficiently for
some problems, while the code PCTH.MIMD.3DnF.O is certain to have serious load im-
balances due to the extra work required at multiple fluid interfaces. Efficiency ratings
varying from 1 to 90 percent would not be surprising. Load balancing strategies which re-
sulted in at least an 80 percent efficiency rating over a wide variety of reasonable produc-
tion level problems would be considered an outstanding result.

12

4.0 The SIMD Architecture

The SIMD massively parallel computing paradigm differs dramatically from the MIMD
hypercube model. We take as our target architecture the Connection Machine (CM-2) pro-
duced by Thinking Machines Corporation. The CM-2 combines up to 65,536 (216) l-bit
processors in a hypercube architecture. Each processor has 8 Kbytes of memory associat-
ed with it. However, in the SIMD case the executable code does not reside in the proces-
sor memory but only the data resides there. Instructions act in parallel on data elements
associated with each processor. The user’s code actually executes on the front end ma-
chine and instructions to act on the parallel data are broadcast from the front end machine.
Floating point computations are performed by Weitek floating point chips. There are 32
processors assigned to each Weitek chip. An important aspect of the Connection Machine
is the concept of virtual processors. Transparently to the user, more data elements of a
given type can be assigned than the actual number of physical processors which are
present on the machine. Thus two or more data elements from a single parallel data struc-
ture are assigned to a given processor. The Connection Machine configuration is illustrat-
ed in Figure 5.

Figure 5. Code and Data Distribution on the Connection Machine.

Connection CM Code
Machine ~

Front End
Front-End Operating System

Connection
Machine
Hardware

Paris

CM Processors

I Parallel Array Data I

4.1 PCTH.SIMD.{phase}.O Conversion

The CTH code will have to be modified extensively to run on the Connection Machine.
These modifications consist principally of rewriting subroutines into vector operation syn-
tax and of modifying the memory management and subroutine call structures to accom-
modate the data-parallel computing paradigm. It is expected that these structures will also
be acceptable for the MIMD hypercube architecture, so that it will be possible to develop
a code philosophy which will be essentially the same on both the MIMD hypercube and
the SIMD machine albeit with greatly differing syntax. Development of a version O Con-
nection Machine code will require a great deal of recoding in the CTH physics routines.
This is not the case with the MIMD architecture.

13

R. Smith and J. Baumgardner at Los Alamos have demonstrated that single material and
multiple material hydrocode algorithms can be ported effectively to the Connection Ma-
chine[1]. It is quite clear from their results that the Connection Machine has the potential
to be a major contender in the supercomputing arena. They chose to implement their ap-
plication using CM Fortran (a Fortran 8x type compiler). The conversion process appears
to be fairly straightforward and has the added benefit of code conciseness and clarity re-
sulting from the Fortran 8x array syntax. Backwards compatibility with standard Fortran
77 will not be possible. A preprocessor of some sort would be required to rewrite the vec-
tor constructs into Fortran 77. We know of only one such product in commercial develop-
ment and none on the market. Effectively, this means that for our research purposes we
must live with a MIMD and a SIMD version of the code until such time as pre-processors
or compilers are available which could deal with the syntax compatibility issue. We are
aware of at least three Fortran compilers which have array syntax capability. These are
the Microsoft 5.0 PC compiler, the CRAY CF177 compiler and the CM Fortran compiler.
We will consider the CM Fortran to be the standard for the purposes of our research. The
Venn diagram outlined in Figure 6 shows the relationship between the Fortran 8x standard
as currently specified, Fortran 77 and CM Fortran.[3].

Figure 6. RelationshiD of CM Fortran to other Fortrans.

))
~cWlll LIGS

_)CM Fortran
--’’/”

Array storage
orde; conve-ntions

Array extensions removed from 8x

An important feature of the above diagram is that the standard Fortran 77 storage order

conventions for arrays, which are often used by programmers for various reasons of effi-

ciency and convenience, are no longer valid for arrays stored on the Connection Machine.

Currently, the Sandia Connection Machine has 16K nodes with 8K bytes of memory each.
This machine is acceptable as a research platform but has a major limitation in that it can
only do 32 bit single-precision arithmetic on its Weitek floating point chips. Weitek 64 bit
chips are available and could be obtained with sufficient funds. CTH must have double
precision arithmetic to do production level calculations. However the lack of 64 bit float-
ing point chips is not seen as an impediment for this project. Limited sample double-pre-
cision computations can be performed at Thinking Machines Corporation over the
network. The development of both the MIMD and SIMD codes will be done here at San-

14

dia during concurrent time frames so as to be able to make reasonable comparisons be-
tween the two architectures.

For our development work we consider reliable and effective access to the 1400 open net-
work from the secure area to be a critical need item. The current VAX 750 MILNET inter-
face is overloaded and effectively inoperable as a means of interactively accessing other
machines on the Internet. The UNIX 8530 upgrade to the current system is scheduled for
August 1990 and should alleviate the current situation as local access will then be avail-
able to the research machines maintained by Org. 1400.

15

5.0 LAN and CRAY Virtual Hypercubes

The development of a hypercube version of CTH should also lead fairly easily to addition-
al applications on more conventional compute platforms. These platforms are not consid-
ered to be the primary target of this research and development project but an effort will be
made to provide portability to these additional platforms.

The MIMD hypercube code will clearly be applicable to some extent to a network archi-
tecture. The network we are thinking of in particular is a group of 2, 4 or 8 workstations
on a local area network which are able to be dedicated for an overnight run on a single
computation. It is obvious that the communications to computation ratio is going to be
much larger in the network case than for a dedicated hypercube. For this reason, it seems
reasonable to envision a small number of workstations running applications for which the
communication to work ratio can be made small enough and the load balancing difficulties
minimized to the point of providing reasonable speedups. The workstation hypercube net-
work also provides an interesting environment for hypercube code algorithm development
as it will tend to greatly penalize communication between the nodes. The idea of using a
network as a virtual hypercube is not a new idea. Portable environments have been used at
Argonne National Laboratory for some time[2] [5]. Several such libraries are in existence
and Argonne is currently developing a Sun network send/receive library based on the
UNIX remote procedure calls (RPC) technology[4]. A network capability maybe very
important in the sense of being able to better serve customers who cannot pay for compute
time on a more powerful machine.

The hypercube code architecture may also be considered as a prototype for a decomposi-
tion scheme for running very large problems on a CRAY machine with solid state disk ac-
cess. The standard CTH database would be divided up into hypercube blocks and then
these individual blocks would be run sequentially (and possibly concurrently on separate
processors). The data would be swapped out through the solid state disk. In this way one
would be able to not only reduce memory charges but also to run computations which
would not have been possible otherwise. A possible way to pass information between vir-
tual nodes is through solid state disk files. The precise means of passing this information
would be hidden in the boundary subroutines.

16

6.0 Summary

We have described a development plan for constructing a massively parallel version of the
hydrocode CTH. This project is intended to demonstrate techniques for porting the code
to a variety of compute platforms including MIMD hypercubes, the SIMD Connection
Machine and secondarily to workstation local area networks and CRAY machines. The
parallel extensions and/or modifications to the code which prove successful are intended
to become part of the future CTH production environment. The development plans de-
scribed herein are based on our current knowledge of parallel hardware and software capa-
bilities and will clearly be modified as the project progresses and additional options
become available.

17

7.0 References

[1] Baumgardner, J. and R. Smith, Personal Communication, Los Alamos National Lab-
oratories, January 1990.

[2] Boyle, J., et. al., Portable Proms ms for Parallel Processors, Holt, Rinehart and Win-
ston, Inc., New York, 1987.

[3]CM Fortran Reference Manual, Ver. 5.2-0.6, Thinking Machines Corporation, Cam-
bridge, Massachusetts, 1989.

[4] Leibfritz, D., Argonne National Laboratories, Personal Communication, 1990.

[5] May, E. N., Portable Parallel Programming in a Fortran Environment, Argonne Na-
tional Labs, ANL-HEP-CP--89-50, 1989.

[6] Robinson, A. C., A Scattered Decomposition Algorithm for Load Balancing Task List
Calls on a MIMD Hypercube, In preparation, 1990.

Distribution:

Sandia internal:

1400 E. H. Barsis

1410 P. J. Either

1412 P. A. Erickson

1412 G. S. Davidson

1412 C. F. Diegart

1420 W. J. Camp

1421 R. J. Thompson

1421 D. B. Holdridge(5)

1422 R. C. Allen

1424 R. E. Benner

1424 J. N. Jortner

1424 S. J. Plimpton

1424 M. P. Sears

1424 J. P. VanDyke

1424 C. T. Vaughan

1500 E. H. Barsis (Acting)

1510 J. W. Nunziato

1520 L. W. Davison

1530 J. R. Asay

1530 S. L. Thompson

1531 M. Elrick

1531 L. N. Kmetyk

1531 J. M. McGlaun(5)

1531 K. Budge

1531 M. Elrick

1531 E. S. Hertel

1531 L. N. Kmetyk

1531 J. S. Peery

1531 A. C. Robinson (10)

19

1533 P. Barrington

1533 R. L. Bell

1533 W. T. Brown

1533 P. J. Chen

1533 E. Fang(5)

1533 A. Farnsworth

1533 G. I. Kerley

1533 M. E. Kipp

1533 S. T. Montgomery

1533 F. R. Norwood

1533 J. S. Rottler

1533 S. A. Silling

1534 J. A. Ang

1534 L.C. Chhabildas

1534 J. E. Dunn

1534 M.D. Furnish

1534 D. E. Grady

1534 M. Shahinpoor

1534 J. W. Swegle

1534 T. G. Trucano

1534 J. L. Wise

1550 C. W. Peterson

1600 W. Herrmann

3141 S. A. Landenberger (5)

3151 W. L. Garner (3)

3154-4 C. H. Dalin, for DOE,TIC (28)

20

org. Bldg. Name Rec’d by

I

I

kg. Bldg. Name Rec’d by

, ! !

(i!!)Sandia National laboratories

	1.0 INTRODUCTION
	2.0 PARALLEL CTH PHASED DEVELOPMENT PLAN
	3.0 THE MIMD ARCHITECTURE
	3.1 PCTH.MIMD.{PHASE}.0 CONVERSION
	3.2 CODE CHANGES TO CREATE PCTH.MIMD.{PHASE}.0
	3.3 PCTH.MIMD.{PHASE}.{VERSION}

	4.0 THE SIMD ARCHITECTURE
	4.1 PCTH.SIMD.{PHASE}.0 CONVERSION

	5.0 LAN AND CRAY VIRTUAL HYPERCUBES
	6.0 SUMMARY
	7.0 REFERENCES

